¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

UCRL-CONF-208375

Ray tracing through a hexahedral
mesh in HADES

G. L. Henderson, M. B. Aufderheide

December 3, 2004

NECDC 2004
Livermore, CA, United States
October 4, 2004 through October 7, 2004

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

UNCLASSIFIED

Proceedings from the NECDC 2004

Ray tracing through a hexahedral mesh in HADES (U)

G.L. Henderson, * M.B. Aufderhede*

*Lawrence Livermore National Laboratotyivermore, California, 94550

In this paper we describe a new ray tracing method targeted for inclusion
in HADES. The algoritm tracks rays through thresimensional tetrakis
hexahedral mesh objects, like those used by the ARES code to model
inertial confinement experimentd))

Problem Statement

It is often useful to simulate radiographic images in industrial proceduresilipat ut
both radiography and computer modeling. Comparing a simutatege with a
radiographic imagproduced during an experiment provides a means to verify correctness
of the physics models and input data. Careful comparison between real and simulated
images can aid in the interpretation of experimental results.

HADES is a software program that simulates radiograging ray tracing
techniques. The prograwas originally developed to simulateRéay transmission
radiographyfor nondestuctive evaluatiorapplications. ®@er timehowever HADES has
grown to simulate neutron radiography over a wide range of neutron energies, proton
radiography in the 1 MeV to 100 GeV range, and recently phase contrast radiography
using XRays in the keV energy range. HADES cimulate paralleiay or conébeam
radiography through a variety of mesh types, as well as through coigeofigeometric
objects. HADES can beun on a variety ofomputer architectures including: SSun
and HP/Compagq workstations, Cray dB#¥ computes, and Macintosh personal
computers.

ARESis a multiprocessing program that models physical phenomena in three
dimensionsThe code can bein on a variety of computer architectur®s ARES mesh
composition can include millions of hexahedral cells.

In order to render a detailed radiographic image, a HADES simulationskepict
detector as square array of pixels. For a 1024 x 1024 imagee tharone million
transmission raysust be trackethrough a multimillion cell ARES mesha daunting
compuation.

Currently, HADES uses an algorithm that is fast and simple to ray trace this type of
mesh. For every voxel in the mesh, HADES computes a “mesh shadow” onto the detecto

Henderson, G.Let al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings from the NECDC 2004

pixels. The path length due ¢éach voxel is added at the detector plane. dppsoach is

very fast because it does not require tracking through the mesh. The disadvantage of this
approach is that the sourdetector rays are not actually tracked through the mesh. For
future applications of HADEShe radiography algorithm will eelcomplete tracks

returned by the ray tracking procedufiéhe problem of tracking through a tetrakis
hexahedral mesh has not been solved in general. Currently, Monte Carlo codes which
need to track through such meshes rezone into a Cartesian mesh.

Algorithm Overview

The new algorithm computes ray path lengths through cells that comprise a three
dimensional mesh object. This method considers that each ray may intersect with every
cell, but imposes a set of hierarchal filters to quickly discard consmlertray/surface
pairs that have no spatial extent overlap.

The intersection function requires pointers to structures that describe hexahedral cell
coordinates and the physical properties of all cells for one damasimgle function
invocation can trdcmultiple rays through one domain. The function returns a set of
linked lists, one list per input ray. Each list contains all the intersection segments between
aparticularray and an entire mesh domain of the 3D hexahedral mesh object.

The hiearchical ay filters are appdid at three “mesh object” levels prior to
computng intersections. &ch filter is the same spatial extent test, comparing the
Cartesian extent of ray end points with the extents of the intersection object (an entire
domain, a single cklor one cell plane facet). The filter system works as follows: spatial
overlap is measured along the “independent” component of a ray (i.e. ther[z] v,
component that spans the greatest extent). If the ray and object overlap in this component,
the wo “dependent” ray components are “trimmed” to the overlap extent. Ray
intersections are possible only if the ray extent along each trimmed, dependent
component overlaps the respective object extents.

The intersection function populates a linked listdfach ray by looping over the cells
of a domain. Every cell is decomposed into 24 triangular facets (six faces per cell, 4
facets per face). Each triangular facet is checked for intersection with the ray. After all
facets of a cell are processed, the rdlyiftiersection set is ordered by distance along the
ray, enabling intersection path length(s) to be computed.

The intersection algorithm itself is not the subject of this paper. Intersection methods
are widely published. In faahuch ofour lowlevel intersection procedure is
implemented directly from “Computational Geometry in(O’Rourke, 1998

Yn this context, a “domain” represents a collection of zones, defined by the simulation code, for the
purpose of forming parallel (@@pendent) processes, in order to partition work to multipheputer
processors

Henderson, G.Let al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings from the NECDC 2004

Instead, we will describe numeric difficulties that ardgeng the software testing
phaseand the solutions we implemented to counter those problems.

Numeric Difficulties

Deficiences in theintersection metholdegan tappeaduring a test that involved
tracking hundreds of ray a small test that tracks 650 raymjifrays had object path
lengths computethcorrectly. Thencorrect path lengths were rmsich as fivepercent
short. Investigatiomevealed that, for every erroneous ray path length, the ray traversed
nearly (but not exactly) parallel through a face of onearerpells. Further inspection
indicated that, in these situatiqm intersectiongint was computed, but the ray and
plane were so nearly parallel that computations mediinaccurate results this
scenarigthe point of intersectiotypically appeardo fall outside the triangular facet in
guestion, and a valid cell intersectionswat tallied.

The figure below illustrates three classes of ray/cell interseclibe$soodclass of
intersections is computed correctly. Instanceb®Btd class areletected and also
computeccorrectly by the algorithn{Duplicate ray segments thexe accumulated along
contiguous celinterfaca thatshae thecomputedntersection segment are removed
later).In our test, all four incorrectly computed ray path lengths derived from instances of
theUgly ray/cell intersection class.

The “Good” The “Bad” The “Ugly”
angle between ray and ray is parallel to, ray is nearly parallel to, and
intersecting cell walls is = £ and on a cell plane intersects cell plane in the

vicinity of cell (angle is < £)

\“"h\-.____-u__‘_\w
,ﬁ‘-‘-.ﬁ:’_ i -
Accurate Detectable Numeric
intersections event inaccuracies

Henderson, G.Let al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings from the NECDC 2004

Solutionsto Numeric I naccuracies

(1)

(2)

Tolerances have beamntroduced at several critical compuats. Thishelps
somewhat, but only idetermining whether a ray/plane intersection point falls
within or outsideof a triangular cell face facdfven hereadding a numeric
toleranceonly provides a knob capable of dialing up or down additional
intersection segments alongeaperamental ray/cell track. A larger tolerance
epsilonincreases the number iotersection segments tabulated.

A second tactical changoduces consiehtly better rsults. Note that each

“leg” of a cell facet is, in facthared by twdacets within the cell. For every
adjacent cell that touches thet), two more facets share theimeeg.It is

possible taassure identical (and consistent) resultshercommon
computationghat arerepeated along thosentiguous facetdVe accomplish

this by considerin@ specific leg to be a directed vector extending fpomt A

to point B, for all the facetsthat share that AB segment. This can be donky
imposirg a vertex ordering regimevithin the intersection algorithm. These
directed line segments are used to generate planar coefficients, as well as signed
area cross products, computed to answer ththrayghfacet question. Within

a cell, consistent vectalirections are attained by numbering vertices of
adjacenfacets in opposite directions,a clockwise or counteriockwise(CW

or CCW) mannerNotice that adjacent facets whishare a “corner” leg also

must order verticeim opposite directions. Frommanter-cellular point ofview,
consistency is achieved by considering adjacent cells to be “even” and “odd”, in
all three logical mesh dimensions (visualize a three dimensional checkerboard
patternwhere even cells are white, and odd cells are plabk vertex order

for each specific facef an odd cell is opposite that of the vertex order

direction (CW versus CCW) on even cells.

Within a cell, consistent vector directions are
attained by numbering vertices of adjacent

facets in opposite directions (CW and CCWW). —
Hotice that adjacent facets that share a /“‘-\ w“7
“corner” leg also order vertices in opposite ;f:ﬂ ~a

directions. - =

=«
From an inter-cell view, consistency is \/ '\

achieved by considering adjacent cells to be

“even” or “odd”, inall three logical mesh I\‘ /1

dimensions (visualize a 3-D, black and white

checkerboard pattern). For a specific cell

/ N
facet, the vertex order of an odd cell is / v\ A//
—_—

opposite that of the order direction on even
cells.

Henderson, G.Let al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings from the NECDC 2004

(3) Finally,thecells thattally exactly one intersection with a rage now
considered a pathologic case, and evoke spesi@thg.We aiginally
corsideredthis evento be a tangential toudietween the ray and the cell.
However, diagnostics revealed that this condition accounted for many of the
object path length intsection shortages, sisatassumptiornas been chaed
We now consider this to be an indiion that a ray and surface may be nearly
parallel. As such, theircumstance triggers a ray “bumping” algorithm which
slightly shifts both ray endpoints (up to 8feient directions), until at leastio
intersections @ tallied, or all eight bumping directions have been exhausted
without achieving two or more intersections

As ore might infer fronmtheimprovemerd above those enhancementnaymitigate
potential numeric inaccuracies, bytfio meanslo theyassure caect ray intersection
pah lengths. In ordeiotcompensate fdhelimitations of our intersection methdendof
floating-point hardware)we haveintroduced aay “combing”process, as fnal step to
the ray tracking proceduréhe combing process eisavery little overhead because it
makes use of one of an existimgckingproductrequirement (returtheray/mesh
intersection segments ordered by distance along theTtayg.far, this practicbas
producedvery accurate path lengtésults for tests

(4) Theray combingstepis initiated after all intersection segments for a ray have
been calculatedndordered by unit poson along the ray (0. to)1The ray
combing process “walks and pretas ordered ray segment listiis entirety
The following ®mbing techniques are applied to eacteredist of ray
intersectiorsegments:

o Detect duplicateay coverage segment sequences. Khegegment
combinationthat producethe “best fit”, andongestray segmengpan.
Deletetheduplicate coverage segment

o Find contiguous segments wibhrerlaging ray coveragéout where
eachsegmenbffers a unique coverage length along the ray. Gobip
segments so as to elimindke overlap.

o Findgaps in the ray path coverage. For logical mesh situations where
simulaion voids are prohibited, extend adjacent segrstls to fill
the ray coverage gap.

Conclusions

o0 A new ray tracing method has been developed for HADES. Doegure tracks
rays through a three dimensianatxahedral mesh.

o Numeric inaccuracies becampparent during early tests of the algorithm.

0 Using a variety of tactics, wappear to have been conquetteese errorsat least
for a limited set of small tests.

Henderson, G.Let al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings from the NECDC 2004

o The adition of a function tawomb through the ordered mesh path segments
along each raprovidesassurance against eremusintersection events thaan
arise due to numeric inaccuracies

Recent Developments and Future Plans

The newray tracing algorithnfas aremany othersis “embarrassingly parallelOnly
theray combing function depends datathatis computeorder dependent

We have recentlglevelopedaparallel version of the algorithrmplementecasa
standalone“driver” program A single source code contaibgth serial and parallel logic
The paralleflow controlis written usinga master/slave paragin. Itinvokes functions
from anMPI library.

There arevarioustrade offs to consider when designangnultiprocessing model. The
master/slave model hagylaringdisadvantage. Executed on a small number of
processorghe masteprocesswhich, in this case, ia significant fractiorof compute
resourcekis idle much of the timeThis is kecause the master procesaply orchestrates
the work of slave processof3uring long, computéntensive jobs, idle processors can
significantly increase wall clock time to completi@n the other hand, a keylvatage
of the master/slave paradigathatslave processor idle time is minimizesihcethe
masterimmediatelyreassigns new work to an idle slgs®cessarThis model can be
efficient for runs that enlist many processors.

We decided to implement a master/slave mbdehusémportant customerare
using massively parallel computeFarthermore, ar ray tracing application @rganized
to minimize memorycacheswapsdecomposig thework into equal sized compute tasks
is difficult. It is impossible to gedict whatthe“typical” number of processots be
allotted tonext years “typical” HADES 3D, parallel rumill be. If “normal usage
evolves ito 8-processor HADES runthenmediocre compute time gaimsight follow.
This scenari@ouldwarrant integration ol secondsimple, round robinparallelmodel
In this alternative model, all processors would compute ray tracks. Each processor would
track all rays through eventh mesh domain, where is the number of processors
allocated to the job. Both models could coexist in HADES, with the round robin method
invokedinternally for parallel jbs enlisted witt8 processors or less

We have run &ew tests to validatthe masterlave parallel impementation. The
tests were ruon IBM and HP/Compaq multiprocessor platforifise biggest test
intersects 65000 rays ti62000 cells. The 62000 cells congerore quarter of a
hemisphere. Becausiee geometry is symmetric about the X ahaxial planes, each cell
is internally reflected about the ¥nd Y-axis (a common HADES option), resulting in a
simulated248000 cell hemisphere. This test is far smaller than simulations that will be

Henderson, G.Let al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings from the NECDC 2004

run by customers. Timings for that test aummaried in Table 1 (for ariP/Compaq
computer), and in Table 2 (for aBM computer) All runs produed acuratepath length
results The observedhd balancé excellent on the IBM computer, and somewhat less
so on the HRCompaq computer rut®n the IBM, ndte that, as more processors are

applied to the run, time of completion continues to drop.

aE%

Table 1: HP/Compaq ESA5EVE8 @ 1 GHz.2

Number CPU CPU
of time time Speedup
CPUs [longest] [shortest] Factorc
(sec) (seq)®

Serial 79058 -
4 38910 (333.48) 2.0

C Speedup Factor times longest Cle = Serial run time

Table2: I1BM Power4 p655 @ 1.5 GHz.2

Number CPU CPU
of time time Speedup
CPUs [longest] [shortest] Factor¢
(sec) (sec)P

Serial 610.82 -————--

4 269.9 (269.35 2.26x
8 127.17 (126.1§ 4.80x
16 67.50 (67.1Q 9.06x

ch node containetiprocessors angl2 GBmemory MPI software provideghared memory MPbonly.
Compare longest and shortest processor compute time for an indication of processor load disparity

aEach node containe®lprocessors antbGB memory Federated switch for intetodeMPI

communication

b Compardongest and shortest processomputetime for anindication ofprocessor loadisparity

C Speedup Factor times longest CPU time = $ariatime

Henderson, G.Let al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings from the NECDC 2004

In the near future, we plan to:

o Implement lboth the serid andparallelversions of the ray tracirgjgorithm into
the next HADES floor version for further testing.

o If the algorithmsurvives the rigors afustometesting, the algorithm wilbe
adapted into the HADES C++ code rewrite.

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under comoadt
7405Eng48.

References

O’Rourke, J.,Computational Geometry in C, Second Editi@ambridge University
Press, Cambridge, UK, 199&hapters 1 and 7

Henderson, G.Let al.

UNCLASSIFIED

